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Disorder and nonconservation in a driven diffusive system
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We consider a disordered asymmetric exclusion process in which randomly chosen sites do not conserve
particle number. The model is motivated by features of many interacting molecular motors such as RNA
polymerases. We solve the steady state exactly in the two limits of infinite and vanishing nonconserving rates.
The first limit is used as an approximation to large but finite rates and allows the study of Griffiths singularities
in a nonequilibrium steady state despite the absence of any transition in the pure model. The disorder is also
shown to induce a stretched exponential decay of system density with stretching experait
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[. INTRODUCTION In this paper we consider another type of disorder. We
Study an asymmetric exclusion proc€sSEP) wherenon-
conservingsites are chosen at random along the lattice. At
these sites particles may attach and detach with specified
rates which may also be drawn at random. Thus there are two

omponents to the disorder. A feature of this disorder is that
t allows a detailed account of the way in which Griffiths

Driven diffusive systems serve as simple models for col
lective phenomena ranging from traffic flow to molecular
motors. Moreover, they provide tractable examples of sys
tems far from thermal equilibrium. Studies of one-
dimensional driven diffusive systems have shown that man

interesting phenomena, which are typically not observed in", - et o
singularities can arise in nonequilibrium steady states. In

one-dimensional systems in thermal equilibrium, exist.>” 9= \ X o ) g
Prominent examples are boundary induced phase transitior?gu'“b”um the mechanism leading to Griffiths singularities

- . s well understood: the disorder, e.g., dilution, breaks the
and spontaneous symmetry breaking; for reviews, see, e. system into pure regions and large pure regions may give rise

[1-3. : . : . to the exponentially suppressed Giriffiths singularities. In the
Most studies have considered systems in which the dyggen cpase, in th)(/a Iinﬁ?of high attachmentgand detachment
namics are the same everywhere in the system or systeMigies  the nonconserving sites break the system into driven
where the dynamics are modified only at the bou”da”esconserving domains.
However, when trying to relate these systems to many inter- Nonconservation of particles in driven systems without
acting molecular motors, the effects of nonconservation andisorder has previously been considered in the context of
disorder(i.e., spatial heterogeneity in the dynamicannot  molecular motors. The idea is that molecular motors move in
be ignored in many cases. a preferred direction along a filament and are able to attach
Indeed there have been some studies on the effects @b and detach from the filament. In the work so far all sites
disorder on driven diffusive systems. For example, the effecare nonconservinfl7—2Q. The motivation for the model we
of assigning a disordered quenched rate to each particle hatudy here comes from the fact that some molecular motors
been studied if4—-10 on a ring geometry. Exact solutions attach and detach only at certain sites.
show that at high enough densities a macroscopic number of More specifically, we give a very simplified description of
particles jam behind the slowest particle in the system. Thenany interacting RNA polymerag®&NAp) motors acting on
phase transition between the jammed and nonjammed phasaeprokaryotic DNAIn vitro. Prokaryotic RNA polymerase
is similar to a Bose-Einstein condensation. Work has als@an initiate without regulatory proteins; namely, RNAp left
been done on an asymmetric exclusion process on a rinign a solution with DNA can produce RNA even if the specific
where the quenched hopping rates between neighboring sit@soteins which regulate its actigfor example, by enhancing
are drawn at randori8,9,17. For molecular motors moving the initiation ratey are not present. RNAp motors can enter
along a disordered substrate this seems to be the relevaand leave the DNA in order to transcribe RNA molecules at
scenario[12,13. It was argued, based on numerics andspecific sites, referred to as promoter and termination sites,
mean-field solutions, that at high densities the system phagespectively.
separates into a region of high density coexisting with a low We consider a lattice model in which periodjopen)
density region. Finally, the combined effect of random hop-boundary conditions correspond to clogegen prokaryotic
ping rates and open boundary conditions was considered IRNA. In the lattice model binding of an RNAp motor to a
[14,15. In [14] it was argued using numerics that the loca-promoter corresponds to a particle entering the system. The
tion of phase transition lines may be sample dependent. Innbinding at the termination site corresponds to a particle
[15] mean-field arguments and numerics indicate the exisleaving the system. In the absence of regulatory proteins the
tence of shifts in phase boundaries which, by analogy withrate of entering the DNA depends on the details of the pro-
equilibrium systems, are expected to be accompanied bgnoter sites. In such systems the RNAp motors do not usually
emergent Griffiths regions. A review of the effects of disor-move from one gene to another. In the lattice model this
der in exclusion models has been givern1]. would correspond to particles not moving from one stretch of
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a, a,, O densities at the disorder sites are determined solely by the

t f } e attachment and detachment processes. In these cases, since
_____ @] )/" ( )A’ ¢ )A‘ the system is composed of conserving domains of the chain

j i+l je2 in contact with disorder sites at the boundaries of each do-

main, the steady state can be written as a product of bound-

FIG. 1. Allowed dynamics of the disordered model. The disor-ary driven ASEPs in which the densities of the boundary

der sites are marked with an asterisk. See text for details. reservoirs are given by the disorder site densiﬁps
Before turning to the disordered ASEP under consider-

conserving sites to a neighboring one, i.e., the limit in whichation we recap some facts, which will be useful later, about
the detachment rates are large at the nonconserving sites. Wee boundary driven ASEP. For the boundary driven ASEP, in
comment that in principle RNAp motors may move in dif- which particles are injected at the left-hand boundary site
ferent directions along the DNA when transcribing differentwith rate « (provided it is vacantand removed from the
messenger RNAs, corresponding to particles moving in diffight-hand boundary site with rat@, exact steady state
ferent directions along different conserving stretches. Howweights for particle configurations can be obtained using a
ever, in the limit when the detachment rate is large this willmatrix product ansati24]. In this ansatz, particle configura-
not influence most of the results described in the paper. Ofions are represented as a product of matrkes- X, where
course, our assumption of randomly distributed lengths o¥=D (E) if site | is occupied(vacan). The steady state
genes(or conserving segmentss not expected to hold. weight of a configuration is given biy|X, - --X_|8) provided
Moreover, the motion of RNAp might depend on the se-the matriceD andE and the vector$a| and|g) satisfy the
quence on which it is moving and we have neglected theelations
binding mechanism to the promoter site. The latter is a sub-
ject of much debatg21]. However, the model provides a DE=D+E=C, a{a|E=(a|, andBD|B)=8). (1)
starting point for analyzing more realistic situations similar
in spirit to Ref.[22] which has motivated the introduction of
the asymmetric exclusion mod@ee alsd23)).

The paper is organized as follows. In Sec. Il, we defin
the model and discuss two limits that are exactly soluble. |
Sec. Il we show that the disorder induces Griffiths-like sin-

From these relations exact expressions for the normalization
(a|C"|B) can be derived which show that the model under-
e "

fJoes a second order phase transition: when leotind 8
=1/2 the system is in a maximum current phase, otherwise

gularities as the rates for entering and leaving the lattice ar% i in one of two low current phases. The phase transition
changed. More significantly, it is shown in Sec. IV that the etween the low current phases IS f|r_st ord_er. The ratz_md
presence of the nonconserving sites leads to anomalous re= B represent the densmes of particles in reservoirs con-
laxation of the system toward the steady state. Specificallyl€cted to the boundary sites.

we argue that decay of measurable quantities decay as A?S';(;Xt' we dusehth(;:‘. kngwn éesults Lor the t:joutr:dary ﬁriven
function of timet as a stretched exponential €xpt?), to study the disoraered case. As stated above, there are

wherec is a nonuniversal constant angl=2/5. Theresults limits _where_ the steady state weight of the disor_dered model
are verified numerically. We conclude in Sec. V. fac_tonzes into a_product over _b(_)undary driven ASEP
weights. The two exactly soluble limits are as follows.
cj,a—, with ¢/a; fixed Specifically we letc;,a;— o
Il. MODEL in a system of finite size then calculate the steady state

The model we consider is a disordered generalization oft_m)' In. this limit, each disorder .Sit’é acquires a dens_ity
the ASEP. The pure ASEP is defined on a one-dimensiondli detgrmlned solely by; anda; which obeys the equation
lattice containingL sites and with periodic boundaries. The °f motion,
lattice is occupied by particles subject to an exclusion inter-

action, which prohibits multiple occupancy of any site. These apj _ (1-p)+ap @)
particles hop with rate 1 to the nearest neighbor site to the at Pi iPi-

right, provided it is empty, and so the total particle numiker

is conse_rved. We introdu_ce no_nconserv_ation intc_J this modetperefore in the steady state

by allowing, at certain siteswhich we will call “disorder”

siteg, processes that do not conserve the total particle num-

ber N. Hence each sité(I=1,...,L) in the pure model re- p; :_Cj__ (3)

mains a pure site with probability, or becomes a disorder Ci+q

site with probability (1-p). Now, at the disorder sites, la-

beled byj=1,..., P, particles attach with rate; or detach If we definen; to be the number of sites between disorder

with rate a;. In general, we wish to consider heterogeneoussitesj and j+1 (i.e., the length of thgth conserving do-

rates for the nonconserving processes. The dynamics are fprain), then the normalizatior, ({n;}) (which is the sum

lustrated in Fig. 1. over the steady state weights of all particle configurations on
To study the model we first consider limits that can besites excluding the disorder sije$or a given configuration

solved exactly. Later, using numerics, we argue that the reof the disorder sitegn;}=n,, ...,np, factorizes into a product

sults are generic. Exact solubility arises when the steady statever normalizations for the boundary driven ASEP:
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C u with probability q,
I [
z (in) =11 (pjICM[1 = pjs0) (4) Pma+e {v with probability 1 —q
wherepp,1=p;. This is the simplest choice of disorder for which Griffiths

¢;,a,—0, with ¢;/a; fixed Specifically we let;,a,—0in  singularities occur. Generalizations to more complicated situ-
a system of finite size and then calculate the steady state. Rfions are straightforward.
this limit the time between each attachment/detachment Using Eq.(4) the steady state normalization satisfies
event tends to infinity. Therefore, after each event the system
reaches a homogeneous steady state of the pure ASEP with
periodic boundaries. Thus the system dengiyN/L satis- Inz, = 2 an(pi'l ~pj+1), (8)
fies the equation of motion =1

=]

whereW,(p;, 1-pj.1) =In{p;|C"[1-pj.1). In order to perform

P P
% = [2 cj} (1-p)+ [E a,}p. (5) the disorder average, we write E®) as a sum over domain
i=1 j=1 sizes; hence

Therefore in the steady state the system density is given by %
p InZ, =2 [y 1 (MWa(U, 1 =) + vy 1 4(NWi(u,1 - u)
n=0
2
p= P]L (6) + Vv,l—u(n)Wn(Uv 1-v)+ Vu,l—u(n)Wn(Uv 1-u] (9
> (cj+a) wherev, 4(n) is the number of conserving domains of size
j=1 bounded by disorder sites at densitiesand 1.

Because the steady state is homogeneous, all sites, includinglwei can ar:/erage over the c:lonf|gurat|qns r?f ﬂgg(n) Zy
disorder sites, have the same steady state depsipjore-  calculating the expectation values, 4(n)) in the thermody-

over, the steady state factorizes and there are no correlatioR@Mic limit (the angular brackets denote a disorder average
between sites. This is achieved by observing that lim..L v, 4(n)) is just
One can also obtain this result by considering the attachthe probability that a site is part of ansite conserving do-
ment and detachment as perturbations that connect differeftain bounded by disorder sites with densitiesand 1-5;
steady statedabeled by particle numbgof the pure system. hence
The weights of these steady states satisfy a balance condition "
which yields Eq.(6) and the factorization proper{25]. L _ 5 nr2
Therefore, one can write the normalization in a form simi- J'LYLL (INZ)=(1-p*2 PG*Wy(u 1 ~u) +q(1~0)

lar to Eq.(4): n=0
e . X[Wy(U, 1 =0) + Wi(u, 1 —U)]
zi(nh =TT (plCM|1 - p). (7 +(1=0)*Wp(v,1 -0v)}. (10
j=1

The form of Eq.(10) is typical of systems that exhibit

This is because in this cafeandE are given by the scalars Griffiths singularities. In equilibrium, these singularities are
1/(1-p) and 1. usually inferred from the properties of the Yang-Lee zeros of

Thus we see that in the two limits considered the nonconthe partition function—we can use the known properties of
servation factorizes the steady state into a product of cornthe Yang-Lee zeros of the analogous quantity, the normaliza-
serving domains. In the following we will use the factorized tion [28], to show how Griffiths singularities arise in the
form (4) with p; given by Eq.(3) as an approximation for the disordered nonequilibrium model: For fixed=1/2 say, in
case where;, a; are large but finite, which is relevant for the the complexv plane and fom arbitrarily large, the zeros of
model of molecular motors. In this case, as one expects fofu|C"|1-v) accumulate arbitrarily close to the point1/2
RNAp, particles enter the lattice at specific sites and unbin@n the real axis. Therefore there exists a singularity in
at the next disordered site. This approximation has a mearw,(u,1-v) arbitrarily close to the poinb=1/2 which is
field character, in the sense that correlations are factorizeglxponentially suppressetby a factor p"). Thus, such a
about the disorder sites; however, all correlations within conGiffiths-type singularity follows whenever andv are such
serving domains are retained. that at least one of th&/,(a, ) in Eq. (10) lies on the phase
boundary of the ASEP, i.e., whenewemland/orv=1/2.

One can go further and consider disorder in ¢fie and
a;'s explicitly. For instance, if botft; anda; are drawn from

We can exploit known properties of the normalization of binary distributions, then the densities at the disorder sites
the boundary driven ASEP to demonstrate the existence afan assume one of four possible values, each with a different
Griffiths-type singularities in the disordered ASEPR5,27). probability in general. However, Griffiths singularities still
As an illustrative example, we consider binary disorder aftarise whenever any one of these values for the density is 1/2,
disorder sites, such that as before. It is also straightforward to use standard arguments

lll. GRIFFITHS SINGULARITIES
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from the study of dilute systems to show that the correlation 3
length remains finite at the Griffiths singularity, as is the case
in equilibrium systems.

Note that the pure limitp=1, of our system, corresponds
to the ASEP on a ring. This is a system that does not exhibit g
any phase transition. Thus Griffiths singularities emerge in § "
the disordered system despite the absence of a transition in
the pure model. This is different from the usual behavior in
equilibrium. Although in this case particles are conserved in
the pure system and the introduction of disorder breaks this
conservation law, one could also consider an open boundary o by o0
driven ASEP as the pure modg9]. +MCS)

To summarize, we have seen that the nonconservation of
particles at certain sites leads to a factorization of the steady FIG. 2. Log-log plot of the decay of the density with time for
state. It is this factorization property that leads to the possia =¢;=10; the initial condition was an empty lattice. The base of
bility of finding Griffiths singularities. The nonconserving 09 is In.
sites act as particle reservoirs at the boundaries of conserving
domains(domains in which the particle dynamics are those Therefore forc=a, in a conserving domain of lengt,
of the pure ASER, the densities of these reservoirs are de-we assume that the particle densityt) decays to its steady
termined by the attachment and detachment rates. The existate value as
tence of Griffiths singularities then, given the factorized form B At
of the steady state, depends on the properties of the Yang- Spn(t) = pn(t) = 1/2~ e, (17)
Lee zeros of the normalization of the boundary driven ASEPyhere A ,=A,n"32. In the disordered case, we need to sum

Such zeros, and therefore also Griffiths singularities, argyer configurations of the disorder sites. This is achieved in
found only when the densities at the disorder sites carryhe same way as in the previous section so, in the thermody-

some spatial dependence. For homogeneous disorder si@mic limit, the decay of the system densitft) becomes
densities, the normalization of the boundary driven ASEP is

given by a product measufee., the matrice® andE are - At

given by scalarsand there are no Yang-Lee zeros. This spa- dp(t) ~ 2 ple, 12

tial dependence need not be disorder in the attachment and n=0

detachment rates, as considered above—one can choose raigfere we retain only the@ dependence, as is sufficient to
with a periodic modulation for example, and still generatedetermine the dominant contribution to the form of the re-
Griffiths singularities. laxation. If we convert the sum into an integral and consider
late times so that the integral can be evaluated at the saddle
point, we obtain

IV. DYNAMICS: STRETCHED EXPONENTIAL DECAY
OF THE DENSITY TO ITS STEADY STATE
VALUE Sp(t) ~ exp(— ct?), (13)

In the pure boundary driven ASEP, whenever the systenwherec is a constant aneb=(1+2)"1=2/5.
is in or at the boundary of the maximum current phase, the Equation(13) predicts the decay of the density up to some
system density decays with time to its stationary value as aprefactor, a power law i, with an exponent peculiar to the
exponential with a decay constant that depends on systedecay of the density. The stretching exponénshould be
sizeL asL? wherez=3/2 is thedynamic exponent30,31]. universal, however, in the sense that other correlation func-
In the low current phase when the boundary injection andions, e.g., the current, should reach their stationary values
ejection rates are equal, a shock exists in the steady state, amith the same stretched exponential decay. This result should
the dynamic exponerz=2. Otherwise, in the low current be valid for more general types of disorder whenever one has
phases the relaxation time is finit80] and does not depend conserving domains in the maximal current phase.
on L. Hence, in the disordered model, whenever contribu- In Figs. 2 and 3 we show the results of simulations. The
tions to the normalizatioif10) are in the maximum current simulations were run on systems of 10 000 sites with peri-
phase, the decay of the system density will be determined bgdic boundary conditions and averaged over 1000 histories
the relaxation of these conserving domains. of the dynamics, starting from an empty lattice and with the

For the following analysis, it is sufficient to consider dis- same realization of disorder. The probability of a site to be
order only in the location of the disorder sites: we considerpure was choosen to lE=0.95. The decay of the averaged
homogeneous attachment and detachment rates,cjc,  system densityp(t) is shown in Fig. 2 forj=c¢;=10, and in
anda;j=a. In the case where=a, Eq. (3) givesp=1/2 at  Fig. 3 fora;=c;=1. The noise at long times in Fig. 3 is due
which point conserving domains are on the boundary of theo the small densities and their enhancement by the logarith-
maximum current phase; otherwise the conserving domainsiic scale. In both cases the straight litf is given for
are in the low current phases. Thus only whera do we  reference. Figure 2 shows very good agreement with the pre-
expect the decay constant associated with a conserving ddicted stretched exponential decay, and even in Fig. 3, where
main to depend on its siZ81]. cj anda; are not large, the agreement is still quite good. Thus
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(4), and recently there has been progress in understanding the
zeros of such quantitid28].

When there is a spectrum of maximal-current conserving-
domain sizes, we have demonstrated that correlation func-
tions undergo a stretched exponential decay with a stretching
exponent predicted to bg=2/5. Moreover, simulations sug-
gest this result holds for a wide range of attachment and
detachment rates. A related stretched exponential decay has
already been observed of autocorrelations in a bond diluted
symmetric exclusion process on a rifg2] (in this casez

100 1000 10000 =2 s50¢=1/3).
HMCS) In respect of the biological motivation of the model, as is
the case in equilibrium, one would not expect to observe any

FIG. 3. Log-log plot of the decay of the density with time for Gyiffiths singularity directly. However, the factorization
gjzcjzl; the initial condition was an empty lattice. The base of log property of the steady state also affects the dynamics in a
is In. way one might hope to observe in real in vitro experiments.

Of course, in experiments, several factors might have to be
it appears that our result for the stretching exponent holds foihcorporated into the model to make it more realistic. Ex-
finite rates, although its derivation is only exact in the limit amples are the distribution of pure domains, the mechanism
of infinite attachment and detachment rates. of binding to the promoter sites, and disorder in the hopping
rates. However, we expect our results to be robust as long as
a maximal current phase in the pure domains can be attained
and the distribution of domains is Poissonian over a wide

In this work we have studied an ASEP with disorder sitesrange. In particular, given a specific domain size distribution
where particles are not conserved. This may provide a basit would be easy to obtain, using the methods described in
for a more realistic model for interacting molecular motorsthe text, the density decay as a function of time.
such as RNAp. We have used an approximation, exact in the It would be instructive to develop further the approxima-
limit of infinite nonconserving rates, the underlying assump-tion that the steady state factorizes about the disorder sites.
tion behind which is that the system factorizes into conservAs we saw in Sec. Il this approximation is exact in two
ing domains. According to the ratios of the attachment andimits, and we gave expressions for the densities at the dis-
detachment rates these domains assume different phasesasgler sites. It would be interesting to develop a scheme that
the ASEP with open boundaries. interpolates between these two limits. Also of interest would

Within this approximation we can explicitly identify Grif- be a better understanding of the correlations between the
fiths singularities. These arise when there are large consergonserving domains which may exist away from the two
ing domains, on the boundary of the maximal current phasegXxact limits and their effect on Griffiths singularities.

An interesting feature is the prediction of a Griffiths singu-
larity despite the absence of a transition in the pure system.

More generally one might ask under what conditions Grif-  The authors thank the Max Planck Institute for Complex
fiths singularities arise in nonequilibrium steady states. IrSystems, Dresden, where this work was initiated, for hospi-
equilibrium systems Giriffiths singularities are understood intality. Work by Y.K. was supported by the National Science
terms of Yang-Lee zeros of the partition function. In non-Foundation through Grants No. DMR-0229243 and No.
equilibrium systems one does not have an energy functiorPMR-0231631 and the Harvard Materials Research Labora-
nevertheless, one can often identify a quantity that plays theory via Grant No. DMR-0213805. M.R.E. and T.H. were
role of a partition function, for example, the normalization supported by EPSRC program Grant No. GR/S10377/01.

V. CONCLUSION
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