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We consider a disordered asymmetric exclusion process in which randomly chosen sites do not conserve
particle number. The model is motivated by features of many interacting molecular motors such as RNA
polymerases. We solve the steady state exactly in the two limits of infinite and vanishing nonconserving rates.
The first limit is used as an approximation to large but finite rates and allows the study of Griffiths singularities
in a nonequilibrium steady state despite the absence of any transition in the pure model. The disorder is also
shown to induce a stretched exponential decay of system density with stretching exponentf=2/5.
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I. INTRODUCTION

Driven diffusive systems serve as simple models for col-
lective phenomena ranging from traffic flow to molecular
motors. Moreover, they provide tractable examples of sys-
tems far from thermal equilibrium. Studies of one-
dimensional driven diffusive systems have shown that many
interesting phenomena, which are typically not observed in
one-dimensional systems in thermal equilibrium, exist.
Prominent examples are boundary induced phase transitions
and spontaneous symmetry breaking; for reviews, see, e.g.,
[1–3].

Most studies have considered systems in which the dy-
namics are the same everywhere in the system or systems
where the dynamics are modified only at the boundaries.
However, when trying to relate these systems to many inter-
acting molecular motors, the effects of nonconservation and
disorder(i.e., spatial heterogeneity in the dynamics) cannot
be ignored in many cases.

Indeed there have been some studies on the effects of
disorder on driven diffusive systems. For example, the effect
of assigning a disordered quenched rate to each particle has
been studied in[4–10] on a ring geometry. Exact solutions
show that at high enough densities a macroscopic number of
particles jam behind the slowest particle in the system. The
phase transition between the jammed and nonjammed phase
is similar to a Bose-Einstein condensation. Work has also
been done on an asymmetric exclusion process on a ring
where the quenched hopping rates between neighboring sites
are drawn at random[8,9,11]. For molecular motors moving
along a disordered substrate this seems to be the relevant
scenario [12,13]. It was argued, based on numerics and
mean-field solutions, that at high densities the system phase
separates into a region of high density coexisting with a low
density region. Finally, the combined effect of random hop-
ping rates and open boundary conditions was considered in
[14,15]. In [14] it was argued using numerics that the loca-
tion of phase transition lines may be sample dependent. In
[15] mean-field arguments and numerics indicate the exis-
tence of shifts in phase boundaries which, by analogy with
equilibrium systems, are expected to be accompanied by
emergent Griffiths regions. A review of the effects of disor-
der in exclusion models has been given in[16].

In this paper we consider another type of disorder. We
study an asymmetric exclusion process(ASEP) wherenon-
conservingsites are chosen at random along the lattice. At
these sites particles may attach and detach with specified
rates which may also be drawn at random. Thus there are two
components to the disorder. A feature of this disorder is that
it allows a detailed account of the way in which Griffiths
singularities can arise in nonequilibrium steady states. In
equilibrium the mechanism leading to Griffiths singularities
is well understood: the disorder, e.g., dilution, breaks the
system into pure regions and large pure regions may give rise
to the exponentially suppressed Griffiths singularities. In the
present case, in the limit of high attachment and detachment
rates, the nonconserving sites break the system into driven
conserving domains.

Nonconservation of particles in driven systems without
disorder has previously been considered in the context of
molecular motors. The idea is that molecular motors move in
a preferred direction along a filament and are able to attach
to and detach from the filament. In the work so far all sites
are nonconserving[17–20]. The motivation for the model we
study here comes from the fact that some molecular motors
attach and detach only at certain sites.

More specifically, we give a very simplified description of
many interacting RNA polymerase(RNAp) motors acting on
a prokaryotic DNA in vitro. Prokaryotic RNA polymerase
can initiate without regulatory proteins; namely, RNAp left
in a solution with DNA can produce RNA even if the specific
proteins which regulate its action(for example, by enhancing
the initiation rates) are not present. RNAp motors can enter
and leave the DNA in order to transcribe RNA molecules at
specific sites, referred to as promoter and termination sites,
respectively.

We consider a lattice model in which periodic(open)
boundary conditions correspond to closed(open) prokaryotic
DNA. In the lattice model binding of an RNAp motor to a
promoter corresponds to a particle entering the system. The
unbinding at the termination site corresponds to a particle
leaving the system. In the absence of regulatory proteins the
rate of entering the DNA depends on the details of the pro-
moter sites. In such systems the RNAp motors do not usually
move from one gene to another. In the lattice model this
would correspond to particles not moving from one stretch of
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conserving sites to a neighboring one, i.e., the limit in which
the detachment rates are large at the nonconserving sites. We
comment that in principle RNAp motors may move in dif-
ferent directions along the DNA when transcribing different
messenger RNAs, corresponding to particles moving in dif-
ferent directions along different conserving stretches. How-
ever, in the limit when the detachment rate is large this will
not influence most of the results described in the paper. Of
course, our assumption of randomly distributed lengths of
genes (or conserving segments) is not expected to hold.
Moreover, the motion of RNAp might depend on the se-
quence on which it is moving and we have neglected the
binding mechanism to the promoter site. The latter is a sub-
ject of much debate[21]. However, the model provides a
starting point for analyzing more realistic situations similar
in spirit to Ref.[22] which has motivated the introduction of
the asymmetric exclusion model(see also[23]).

The paper is organized as follows. In Sec. II, we define
the model and discuss two limits that are exactly soluble. In
Sec. III we show that the disorder induces Griffiths-like sin-
gularities as the rates for entering and leaving the lattice are
changed. More significantly, it is shown in Sec. IV that the
presence of the nonconserving sites leads to anomalous re-
laxation of the system toward the steady state. Specifically,
we argue that decay of measurable quantities decay as a
function of time t as a stretched exponential exps−ctfd,
wherec is a nonuniversal constant andf=2/5. Theresults
are verified numerically. We conclude in Sec. V.

II. MODEL

The model we consider is a disordered generalization of
the ASEP. The pure ASEP is defined on a one-dimensional
lattice containingL sites and with periodic boundaries. The
lattice is occupied by particles subject to an exclusion inter-
action, which prohibits multiple occupancy of any site. These
particles hop with rate 1 to the nearest neighbor site to the
right, provided it is empty, and so the total particle numberN
is conserved. We introduce nonconservation into this model
by allowing, at certain sites(which we will call “disorder”
sites), processes that do not conserve the total particle num-
ber N. Hence each sitel sl =1,… ,Ld in the pure model re-
mains a pure site with probabilityp, or becomes a disorder
site with probabilitys1−pd. Now, at the disorder sites, la-
beled by j =1,… , P, particles attach with ratecj or detach
with rate aj. In general, we wish to consider heterogeneous
rates for the nonconserving processes. The dynamics are il-
lustrated in Fig. 1.

To study the model we first consider limits that can be
solved exactly. Later, using numerics, we argue that the re-
sults are generic. Exact solubility arises when the steady state

densities at the disorder sites are determined solely by the
attachment and detachment processes. In these cases, since
the system is composed of conserving domains of the chain
in contact with disorder sites at the boundaries of each do-
main, the steady state can be written as a product of bound-
ary driven ASEPs in which the densities of the boundary
reservoirs are given by the disorder site densitiesr j.

Before turning to the disordered ASEP under consider-
ation we recap some facts, which will be useful later, about
the boundary driven ASEP. For the boundary driven ASEP, in
which particles are injected at the left-hand boundary site
with rate a (provided it is vacant) and removed from the
right-hand boundary site with rateb, exact steady state
weights for particle configurations can be obtained using a
matrix product ansatz[24]. In this ansatz, particle configura-
tions are represented as a product of matricesX1¯XL where
Xl =D sEd if site l is occupied(vacant). The steady state
weight of a configuration is given bykauX1¯XLubl provided
the matricesD andE and the vectorskau and ubl satisfy the
relations

DE = D + E ; C, akauE = kau, andbDubl = ubl. s1d

From these relations exact expressions for the normalization
kauCLubl can be derived which show that the model under-
goes a second order phase transition: when botha and b
ù1/2 the system is in a maximum current phase, otherwise
it is in one of two low current phases. The phase transition
between the low current phases is first order. The ratesa and
1−b represent the densities of particles in reservoirs con-
nected to the boundary sites.

Next, we use the known results for the boundary driven
ASEP to study the disordered case. As stated above, there are
limits where the steady state weight of the disordered model
factorizes into a product over boundary driven ASEP
weights. The two exactly soluble limits are as follows.

cj ,aj →`, with cj /aj fixed. Specifically we letcj ,aj →`
in a system of finite size then calculate the steady state
st→`d. In this limit, each disorder sitej acquires a density
r j determined solely bycj andaj which obeys the equation
of motion,

] r j

] t
= s1 − r jd + ajr j . s2d

Therefore in the steady state

r j =
cj

cj + aj
. s3d

If we definenj to be the number of sites between disorder
sites j and j +1 (i.e., the length of thej th conserving do-
main), then the normalizationZLshnjjd (which is the sum
over the steady state weights of all particle configurations on
sites excluding the disorder sites), for a given configuration
of the disorder siteshnjj=n1,… ,nP, factorizes into a product
over normalizations for the boundary driven ASEP:

FIG. 1. Allowed dynamics of the disordered model. The disor-
der sites are marked with an asterisk. See text for details.
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ZLshnjjd = p
j=1

P

kr juCnju1 − r j+1l s4d

whererP+1=r1.
cj ,aj →0, with cj /aj fixed. Specifically we letcj ,aj →0 in

a system of finite size and then calculate the steady state. In
this limit the time between each attachment/detachment
event tends to infinity. Therefore, after each event the system
reaches a homogeneous steady state of the pure ASEP with
periodic boundaries. Thus the system densityr=N/L satis-
fies the equation of motion

] r

] t
= Fo

j=1

P

cjGs1 − rd + Fo
j=1

P

ajGr. s5d

Therefore in the steady state the system density is given by

r =

o
j=1

P

cj

o
j=1

P

scj + ajd

. s6d

Because the steady state is homogeneous, all sites, including
disorder sites, have the same steady state densityr. More-
over, the steady state factorizes and there are no correlations
between sites.

One can also obtain this result by considering the attach-
ment and detachment as perturbations that connect different
steady states(labeled by particle number) of the pure system.
The weights of these steady states satisfy a balance condition
which yields Eq.(6) and the factorization property[25].

Therefore, one can write the normalization in a form simi-
lar to Eq.(4):

ZLshnjjd = p
j=1

P

kruCnju1 − rl. s7d

This is because in this caseD andE are given by the scalars
1/s1−rd and 1/r.

Thus we see that in the two limits considered the noncon-
servation factorizes the steady state into a product of con-
serving domains. In the following we will use the factorized
form (4) with r j given by Eq.(3) as an approximation for the
case wherecj ,aj are large but finite, which is relevant for the
model of molecular motors. In this case, as one expects for
RNAp, particles enter the lattice at specific sites and unbind
at the next disordered site. This approximation has a mean-
field character, in the sense that correlations are factorized
about the disorder sites; however, all correlations within con-
serving domains are retained.

III. GRIFFITHS SINGULARITIES

We can exploit known properties of the normalization of
the boundary driven ASEP to demonstrate the existence of
Griffiths-type singularities in the disordered ASEP[26,27].
As an illustrative example, we consider binary disorder at
disorder sites, such that

r j =
cj

aj + cj
= Hu with probability q,

v with probability 1 −q.
J

This is the simplest choice of disorder for which Griffiths
singularities occur. Generalizations to more complicated situ-
ations are straightforward.

Using Eq.(4) the steady state normalization satisfies

ln ZL = o
j=1

P

Wnj
sr j,1 −r j+1d, s8d

whereWnsr j ,1−r j+1d=lnkr juCnju1−r j+1l. In order to perform
the disorder average, we write Eq.(8) as a sum over domain
sizes; hence

ln ZL = o
n=0

`

fnu,1−vsndWnsu,1 −vd + nu,1−usndWnsu,1 −ud

+ nv,1−vsndWnsv,1 −vd + nv,1−usndWnsv,1 −udg s9d

wherena,bsnd is the number of conserving domains of sizen
bounded by disorder sites at densitiesa and 1−b.

We can average over the configurations of thena,bsnd by
calculating the expectation valueskna,bsndl in the thermody-
namic limit (the angular brackets denote a disorder average).
This is achieved by observing that limL→`L−1kna,bsndl is just
the probability that a site is part of ann-site conserving do-
main bounded by disorder sites with densitiesa and 1−b;
hence

lim
L→`

L−1kln ZLl = s1 − pd2o
n=0

`

pnhq2Wnsu,1 −ud + qs1 − qd

3fWnsu,1 −vd + Wnsv,1 −udg

+ s1 − qd2Wnsv,1 −vdj. s10d

The form of Eq.(10) is typical of systems that exhibit
Griffiths singularities. In equilibrium, these singularities are
usually inferred from the properties of the Yang-Lee zeros of
the partition function—we can use the known properties of
the Yang-Lee zeros of the analogous quantity, the normaliza-
tion [28], to show how Griffiths singularities arise in the
disordered nonequilibrium model: For fixeduù1/2 say, in
the complexv plane and forn arbitrarily large, the zeros of
kuuCnu1−vl accumulate arbitrarily close to the pointv=1/2
on the real axis. Therefore there exists a singularity in
Wnsu,1−vd arbitrarily close to the pointv=1/2 which is
exponentially suppressed(by a factor pn). Thus, such a
Griffiths-type singularity follows wheneveru andv are such
that at least one of theWnsa ,bd in Eq. (10) lies on the phase
boundary of the ASEP, i.e., wheneveru and/orv=1/2.

One can go further and consider disorder in thecj’s and
aj’s explicitly. For instance, if bothcj andaj are drawn from
binary distributions, then the densities at the disorder sites
can assume one of four possible values, each with a different
probability in general. However, Griffiths singularities still
arise whenever any one of these values for the density is 1/2,
as before. It is also straightforward to use standard arguments
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from the study of dilute systems to show that the correlation
length remains finite at the Griffiths singularity, as is the case
in equilibrium systems.

Note that the pure limit,p=1, of our system, corresponds
to the ASEP on a ring. This is a system that does not exhibit
any phase transition. Thus Griffiths singularities emerge in
the disordered system despite the absence of a transition in
the pure model. This is different from the usual behavior in
equilibrium. Although in this case particles are conserved in
the pure system and the introduction of disorder breaks this
conservation law, one could also consider an open boundary
driven ASEP as the pure model[29].

To summarize, we have seen that the nonconservation of
particles at certain sites leads to a factorization of the steady
state. It is this factorization property that leads to the possi-
bility of finding Griffiths singularities. The nonconserving
sites act as particle reservoirs at the boundaries of conserving
domains(domains in which the particle dynamics are those
of the pure ASEP); the densities of these reservoirs are de-
termined by the attachment and detachment rates. The exis-
tence of Griffiths singularities then, given the factorized form
of the steady state, depends on the properties of the Yang-
Lee zeros of the normalization of the boundary driven ASEP.
Such zeros, and therefore also Griffiths singularities, are
found only when the densities at the disorder sites carry
some spatial dependence. For homogeneous disorder site
densities, the normalization of the boundary driven ASEP is
given by a product measure(i.e., the matricesD and E are
given by scalars) and there are no Yang-Lee zeros. This spa-
tial dependence need not be disorder in the attachment and
detachment rates, as considered above—one can choose rates
with a periodic modulation for example, and still generate
Griffiths singularities.

IV. DYNAMICS: STRETCHED EXPONENTIAL DECAY
OF THE DENSITY TO ITS STEADY STATE

VALUE

In the pure boundary driven ASEP, whenever the system
is in or at the boundary of the maximum current phase, the
system density decays with time to its stationary value as an
exponential with a decay constant that depends on system
sizeL asLz, wherez=3/2 is thedynamic exponent[30,31].
In the low current phase when the boundary injection and
ejection rates are equal, a shock exists in the steady state, and
the dynamic exponentz=2. Otherwise, in the low current
phases the relaxation time is finite[30] and does not depend
on L. Hence, in the disordered model, whenever contribu-
tions to the normalization(10) are in the maximum current
phase, the decay of the system density will be determined by
the relaxation of these conserving domains.

For the following analysis, it is sufficient to consider dis-
order only in the location of the disorder sites: we consider
homogeneous attachment and detachment rates, i.e.,cj =c
and aj =a. In the case wherec=a, Eq. (3) gives r=1/2 at
which point conserving domains are on the boundary of the
maximum current phase; otherwise the conserving domains
are in the low current phases. Thus only whenc=a do we
expect the decay constant associated with a conserving do-
main to depend on its size[31].

Therefore forc=a, in a conserving domain of lengthn,
we assume that the particle densityrnstd decays to its steady
state value as

drnstd ; rnstd − 1/2, e−Dnt, s11d

whereDn=D0n
−3/2. In the disordered case, we need to sum

over configurations of the disorder sites. This is achieved in
the same way as in the previous section so, in the thermody-
namic limit, the decay of the system densityrstd becomes

drstd , o
n=0

`

pne−Dnt, s12d

where we retain only then dependence, as is sufficient to
determine the dominant contribution to the form of the re-
laxation. If we convert the sum into an integral and consider
late times so that the integral can be evaluated at the saddle
point, we obtain

drstd , exps− ctfd, s13d

wherec is a constant andf=s1+zd−1=2/5.
Equation(13) predicts the decay of the density up to some

prefactor, a power law int, with an exponent peculiar to the
decay of the density. The stretching exponentf should be
universal, however, in the sense that other correlation func-
tions, e.g., the current, should reach their stationary values
with the same stretched exponential decay. This result should
be valid for more general types of disorder whenever one has
conserving domains in the maximal current phase.

In Figs. 2 and 3 we show the results of simulations. The
simulations were run on systems of 10 000 sites with peri-
odic boundary conditions and averaged over 1000 histories
of the dynamics, starting from an empty lattice and with the
same realization of disorder. The probability of a site to be
pure was choosen to bep=0.95. The decay of the averaged
system densitydrstd is shown in Fig. 2 foraj =cj =10, and in
Fig. 3 for aj =cj =1. The noise at long times in Fig. 3 is due
to the small densities and their enhancement by the logarith-
mic scale. In both cases the straight linet2/5 is given for
reference. Figure 2 shows very good agreement with the pre-
dicted stretched exponential decay, and even in Fig. 3, where
cj andaj are not large, the agreement is still quite good. Thus

FIG. 2. Log-log plot of the decay of the density with time for
aj =cj =10; the initial condition was an empty lattice. The base of
log is ln.

EVANS, HANNEY, AND KAFRI PHYSICAL REVIEW E 70, 066124(2004)

066124-4



it appears that our result for the stretching exponent holds for
finite rates, although its derivation is only exact in the limit
of infinite attachment and detachment rates.

V. CONCLUSION

In this work we have studied an ASEP with disorder sites
where particles are not conserved. This may provide a basis
for a more realistic model for interacting molecular motors
such as RNAp. We have used an approximation, exact in the
limit of infinite nonconserving rates, the underlying assump-
tion behind which is that the system factorizes into conserv-
ing domains. According to the ratios of the attachment and
detachment rates these domains assume different phases of
the ASEP with open boundaries.

Within this approximation we can explicitly identify Grif-
fiths singularities. These arise when there are large conserv-
ing domains, on the boundary of the maximal current phase.
An interesting feature is the prediction of a Griffiths singu-
larity despite the absence of a transition in the pure system.

More generally one might ask under what conditions Grif-
fiths singularities arise in nonequilibrium steady states. In
equilibrium systems Griffiths singularities are understood in
terms of Yang-Lee zeros of the partition function. In non-
equilibrium systems one does not have an energy function;
nevertheless, one can often identify a quantity that plays the
role of a partition function, for example, the normalization

(4), and recently there has been progress in understanding the
zeros of such quantities[28].

When there is a spectrum of maximal-current conserving-
domain sizes, we have demonstrated that correlation func-
tions undergo a stretched exponential decay with a stretching
exponent predicted to bef=2/5.Moreover, simulations sug-
gest this result holds for a wide range of attachment and
detachment rates. A related stretched exponential decay has
already been observed of autocorrelations in a bond diluted
symmetric exclusion process on a ring[32] (in this casez
=2 sof=1/3).

In respect of the biological motivation of the model, as is
the case in equilibrium, one would not expect to observe any
Griffiths singularity directly. However, the factorization
property of the steady state also affects the dynamics in a
way one might hope to observe in real in vitro experiments.
Of course, in experiments, several factors might have to be
incorporated into the model to make it more realistic. Ex-
amples are the distribution of pure domains, the mechanism
of binding to the promoter sites, and disorder in the hopping
rates. However, we expect our results to be robust as long as
a maximal current phase in the pure domains can be attained
and the distribution of domains is Poissonian over a wide
range. In particular, given a specific domain size distribution
it would be easy to obtain, using the methods described in
the text, the density decay as a function of time.

It would be instructive to develop further the approxima-
tion that the steady state factorizes about the disorder sites.
As we saw in Sec. II this approximation is exact in two
limits, and we gave expressions for the densities at the dis-
order sites. It would be interesting to develop a scheme that
interpolates between these two limits. Also of interest would
be a better understanding of the correlations between the
conserving domains which may exist away from the two
exact limits and their effect on Griffiths singularities.
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